# Mean reversion Spread Trading with Linear Regression # # Deniz Turan, (denizstij AT gmail DOT com), 19-Jan-2014 import numpy as np from scipy.stats import linregress R_P = 1 # refresh period in days W_L = 30 # window length in days def initialize(context): context.y=sid(14517) # EWC context.x=sid(14516) # EWA # for long and shorting context.max_notional = 1000000 context.min_notional = -1000000.0 # set a fixed slippage set_slippage(slippage.FixedSlippage(spread=0.01)) context.long=False; context.short=False; def handle_data(context, data): xpx=data[context.x].price ypx=data[context.y].price retVal=linearRegression(data,context) # lets dont do anything if we dont have enough data yet if retVal is None: return None hedgeRatio,intercept=retVal; spread=ypx-hedgeRatio*xpx data[context.y]['spread'] = spread record(ypx=ypx,spread=spread,xpx=xpx) # find moving average rVal=getMeanStd(data, context) # lets dont do anything if we dont have enough data yet if rVal is None: return meanSpread,stdSpread = rVal # zScore is the number of unit zScore=(spread-meanSpread)/stdSpread; QTY=1000 qtyX=-hedgeRatio*QTY*xpx; qtyY=QTY*ypx; entryZscore=1; exitZscore=0; if zScore < -entryZscore and canEnterLong(context): # enter long the spread order(context.y, qtyY) order(context.x, qtyX) context.long=True context.short=False if zScore > entryZscore and canEnterShort(context): # enter short the spread order(context.y, -qtyY) order(context.x, -qtyX) context.short=True context.long=False record(cash=context.portfolio.cash, stock=context.portfolio.positions_value) @batch_transform(window_length=W_L, refresh_period=R_P) def linearRegression(datapanel, context): xpx = datapanel['price'][context.x] ypx = datapanel['price'][context.y] beta, intercept, r, p, stderr = linregress(ypx, xpx) # record(beta=beta, intercept=intercept) return (beta, intercept) @batch_transform(window_length=W_L, refresh_period=R_P) def getMeanStd(datapanel, context): spread = datapanel['spread'][context.y] meanSpread=spread.mean() stdSpread=spread.std() if meanSpread is not None and stdSpread is not None : return (meanSpread, stdSpread) else: return None def canEnterLong(context): notional=context.portfolio.positions_value if notional < context.max_notional and not context.long: # and not context.short: return True else: return False def canEnterShort(context): notional=context.portfolio.positions_value if notional > context.max_notional and not context.short: #and not context.short: return True else: return False
Showing posts with label Bollinger Band. Show all posts
Showing posts with label Bollinger Band. Show all posts
Sunday, January 19, 2014
Mean reversion with Linear Regression and Bollinger Band for Spread Trading within Python
Following code demonstrates how to utilize to linear regression to estimate hedge ratio and Bollinger band for spread trading. The code can be back tested at Quantopian.com
Monday, November 18, 2013
Simple Passive Momentum Trading with Bollinger Band
Below, you can see a simple trading algorithm based on momentum and bollinger band on Quantopian.com
# Simple Passive Momentum Trading with Bollinger Band import numpy as np import statsmodels.api as stat import statsmodels.tsa.stattools as ts # globals for batch transform decorator R_P = 1 # refresh period in days W_L = 30 # window length in days lookback=22 def initialize(context): context.stock = sid(24) # Apple (ignoring look-ahead bias) # for long and shorting context.max_notional = 1000000 context.min_notional = -1000000.0 # set a fixed slippage set_slippage(slippage.FixedSlippage(spread=0.01)) def handle_data(context, data): # find moving average rVal=getMeanStd(data) # lets dont do anything if we dont have enough data yet if rVal is None: return meanPrice,stdPrice = rVal price=data[context.stock].price notional = context.portfolio.positions[context.stock].amount * price # Passive momentum trading where for trading signal, Z-score is estimated h=((price-meanPrice)/stdPrice) # Bollinger band, if price is out of 2 std of moving mean, than lets trade if h>2 and notional < context.max_notional : # long order(context.stock,h*1000) if h<-2 and notional > context.min_notional: # short order(context.stock,h*1000) @batch_transform(window_length=W_L, refresh_period=R_P) def getMeanStd(datapanel): prices = datapanel['price'] meanPrice=prices.mean() stdPrice=prices.std() if meanPrice is not None and stdPrice is not None : return (meanPrice, stdPrice) else: return NoneScreen shot of the back testing result is: Click here to run algorithm on Quantopian.com.
Labels:
Algorithmic Trading,
Bollinger Band,
finance,
Momentum Trading,
Python,
Trading
Subscribe to:
Posts (Atom)