Showing posts with label Kalman Filter. Show all posts
Showing posts with label Kalman Filter. Show all posts

Sunday, January 19, 2014

Mean reversion with Kalman Filter as Dynamic Linear Regression for Spread Trading within Python

Following code demonstrates how to utilize to kalman filter to estimate hedge ratio for spread trading. The code can be back tested at Quantopian.com
#   Mean reversion with Kalman Filter as Dynamic Linear Regression
#
#   Following algorithm trades based on mean reversion logic of spread
#   between cointegrated securities  by using Kalman Filter as 
#   Dynamic Linear Regression. Kalman filter is used here to estimate hedge (beta)
#
#   Kalman Filter structure 
# 
# - measurement equation (linear regression):
#   y= beta*x+err  # err is a guassian noise 
#  
# - Prediction model:
#   beta(t) = beta(t-1) + w(t-1) # w is a guassian noise
#   Beta is here our hedge unit.
# 
# - Prediction section
#   beta_hat(t|t-1)=beta_hat(t-1|t-1)  # beta_hat is expected value of beta
#   P(t|t-1)=P(t-1|t-1) + V_w          # prediction error, which is cov(beta-beta_hat)
#   y_hat(t)=beta_hat(t|t-1)*x(t)      # measurement prediction
#   err(t)=y(t)-y_hat(t)                 # forecast error
#   Q(t)=x(t)'*P(t|t-1)*x(t) + V_e     # variance of forecast error, var(err(t))
#
# - Update section
#   K(t)=R(t|t-1)*x(t)/Q(t)                       # Kalman filter between 0 and 1
#   beta_hat(t|t)=beta_hat(t|t-1)+ K*err(t)       # State update
#   P(t|t)=P(t|t-1)(1-K*x(t))                     # State covariance update
#   
#   Deniz Turan, (denizstij AT gmail DOT com), 19-Jan-2014
#   
import numpy as np

# Initialization logic 
def initialize(context):
    context.x=sid(14517) # EWC
    context.y=sid(14516) # EWA
    
    # for long and shorting 
    context.max_notional = 1000000
    context.min_notional = -1000000.0
    # set a fixed slippage
    set_slippage(slippage.FixedSlippage(spread=0.01))
    
    # between 0 and 1 where 1 means fastes change in beta, 
    #whereas small values indicates liniar regression
    
    delta = 0.0001 
    context.Vw=delta/(1-delta)*np.eye(2);
    # default peridiction error variance
    context.Ve=0.001;

    # beta, holds slope and intersection
    context.beta=np.zeros((2,1));    
    context.postBeta=np.zeros((2,1));   # previous beta
    
    
    # covariance of error between projected beta and  beta
    # cov (beta-priorBeta) = E[(beta-priorBeta)(beta-priorBeta)']
    context.P=np.zeros((2,2));
    context.priorP=np.ones((2,2));    
    
    context.started=False;
    context.warmupPeriod=3
    context.warmupCount=0
    
    context.long=False;
    context.short=False;
     
# Will be called on every trade event for the securities specified. 
def handle_data(context, data):
    ##########################################
    # Prediction 
    ##########################################    
    if context.started:    
        # state prediction 
        context.beta=context.postBeta;
        #prior P prediction 
        context.priorP=context.P+context.Vw
    else:        
        context.started=True;
    
    
    xpx=np.mat([[1,data[context.x].price]])
    ypx=data[context.y].price
    
    # projected y
    yhat=np.dot(xpx,context.beta)[0,0]    
    # prediction error
    err=(ypx-yhat);
    # variance of err, var(err)
    Q=(np.dot(np.dot(xpx,context.priorP),xpx.T)+context.Ve)[0,0]

    # Kalman gain
    K=(np.dot(context.priorP,xpx.T)/Q)[0,0]
    
    ##########################################
    # Update section
    ##########################################    
    context.postBeta=context.beta + np.dot(K,err)

    context.warmupCount+=1
    if context.warmupPeriod > context.warmupCount:
        return
    
    #order(sid(24), 50)
    message='started: {st}, xprice: {xpx}, yprice: {ypx},\
            yhat:{yhat} beta: {b}, postBeta: {pBeta} err: {e}, Q: {Q}, K: {K}'
    message= message.format(st=context.started,xpx=xpx,ypx=ypx,\
                            yhat=yhat, b=context.beta, \
                            pBeta=context.postBeta, e=err, Q=Q, K=K)     
    log.info(message)  
   
#    record(xpx=data[context.x].price, ypx=data[context.y].price,err=err, yhat=yhat, beta=context.beta[1,0])
    ##########################################
    # Trading section
    # Spread (y-beta*x) is traded
    ##########################################    

    QTY=1000
    qtyX=-context.beta[1,0]*xpx[0,1]*QTY;        
    qtyY=ypx*QTY;        

    # similar to zscore in bollinger band 
    stdQ=np.sqrt(Q)

    if err < -stdQ and canEnterLong(context):
        # enter long the spread
        order(context.y, qtyY)
        order(context.x, qtyX)
        context.long=True
        
    if err > -stdQ and canExitLong(context):
        # exit long the spread
        order(context.y, -qtyY)
        order(context.x, -qtyX) 
        context.long=False        
 
    if err > stdQ and canEnterShort(context):
        #  enter short the spread
        order(context.y, -qtyY)
        order(context.x, -qtyX)
        context.short=True
    
    if err < stdQ and canExitShort(context):
        # exit short the spread
        order(context.y,qtyY)
        order(context.x,qtyX) 
        context.short=False
    
    record(cash=context.portfolio.cash, stock=context.portfolio.positions_value)

def canEnterLong(context):
    notional=context.portfolio.positions_value

    if notional < context.max_notional \
       and not context.long and not context.short:
        return True
    else:
        return False

def canExitLong(context):
    if context.long and not context.short:
        return True
    else:
        return False
    
def canEnterShort(context):
    notional=context.portfolio.positions_value

    if notional > context.max_notional \
       and not context.long and not context.short:
        return True
    else:
        return False

def canExitShort(context):
    if  context.short and not  context.long:
        return True
    else:
        return False