# Mean reversion with Kalman Filter as Dynamic Linear Regression
#
# Following algorithm trades based on mean reversion logic of spread
# between cointegrated securities by using Kalman Filter as
# Dynamic Linear Regression. Kalman filter is used here to estimate hedge (beta)
#
# Kalman Filter structure
#
# - measurement equation (linear regression):
# y= beta*x+err # err is a guassian noise
#
# - Prediction model:
# beta(t) = beta(t-1) + w(t-1) # w is a guassian noise
# Beta is here our hedge unit.
#
# - Prediction section
# beta_hat(t|t-1)=beta_hat(t-1|t-1) # beta_hat is expected value of beta
# P(t|t-1)=P(t-1|t-1) + V_w # prediction error, which is cov(beta-beta_hat)
# y_hat(t)=beta_hat(t|t-1)*x(t) # measurement prediction
# err(t)=y(t)-y_hat(t) # forecast error
# Q(t)=x(t)'*P(t|t-1)*x(t) + V_e # variance of forecast error, var(err(t))
#
# - Update section
# K(t)=R(t|t-1)*x(t)/Q(t) # Kalman filter between 0 and 1
# beta_hat(t|t)=beta_hat(t|t-1)+ K*err(t) # State update
# P(t|t)=P(t|t-1)(1-K*x(t)) # State covariance update
#
# Deniz Turan, (denizstij AT gmail DOT com), 19-Jan-2014
#
import numpy as np
# Initialization logic
def initialize(context):
context.x=sid(14517) # EWC
context.y=sid(14516) # EWA
# for long and shorting
context.max_notional = 1000000
context.min_notional = -1000000.0
# set a fixed slippage
set_slippage(slippage.FixedSlippage(spread=0.01))
# between 0 and 1 where 1 means fastes change in beta,
#whereas small values indicates liniar regression
delta = 0.0001
context.Vw=delta/(1-delta)*np.eye(2);
# default peridiction error variance
context.Ve=0.001;
# beta, holds slope and intersection
context.beta=np.zeros((2,1));
context.postBeta=np.zeros((2,1)); # previous beta
# covariance of error between projected beta and beta
# cov (beta-priorBeta) = E[(beta-priorBeta)(beta-priorBeta)']
context.P=np.zeros((2,2));
context.priorP=np.ones((2,2));
context.started=False;
context.warmupPeriod=3
context.warmupCount=0
context.long=False;
context.short=False;
# Will be called on every trade event for the securities specified.
def handle_data(context, data):
##########################################
# Prediction
##########################################
if context.started:
# state prediction
context.beta=context.postBeta;
#prior P prediction
context.priorP=context.P+context.Vw
else:
context.started=True;
xpx=np.mat([[1,data[context.x].price]])
ypx=data[context.y].price
# projected y
yhat=np.dot(xpx,context.beta)[0,0]
# prediction error
err=(ypx-yhat);
# variance of err, var(err)
Q=(np.dot(np.dot(xpx,context.priorP),xpx.T)+context.Ve)[0,0]
# Kalman gain
K=(np.dot(context.priorP,xpx.T)/Q)[0,0]
##########################################
# Update section
##########################################
context.postBeta=context.beta + np.dot(K,err)
context.warmupCount+=1
if context.warmupPeriod > context.warmupCount:
return
#order(sid(24), 50)
message='started: {st}, xprice: {xpx}, yprice: {ypx},\
yhat:{yhat} beta: {b}, postBeta: {pBeta} err: {e}, Q: {Q}, K: {K}'
message= message.format(st=context.started,xpx=xpx,ypx=ypx,\
yhat=yhat, b=context.beta, \
pBeta=context.postBeta, e=err, Q=Q, K=K)
log.info(message)
# record(xpx=data[context.x].price, ypx=data[context.y].price,err=err, yhat=yhat, beta=context.beta[1,0])
##########################################
# Trading section
# Spread (y-beta*x) is traded
##########################################
QTY=1000
qtyX=-context.beta[1,0]*xpx[0,1]*QTY;
qtyY=ypx*QTY;
# similar to zscore in bollinger band
stdQ=np.sqrt(Q)
if err < -stdQ and canEnterLong(context):
# enter long the spread
order(context.y, qtyY)
order(context.x, qtyX)
context.long=True
if err > -stdQ and canExitLong(context):
# exit long the spread
order(context.y, -qtyY)
order(context.x, -qtyX)
context.long=False
if err > stdQ and canEnterShort(context):
# enter short the spread
order(context.y, -qtyY)
order(context.x, -qtyX)
context.short=True
if err < stdQ and canExitShort(context):
# exit short the spread
order(context.y,qtyY)
order(context.x,qtyX)
context.short=False
record(cash=context.portfolio.cash, stock=context.portfolio.positions_value)
def canEnterLong(context):
notional=context.portfolio.positions_value
if notional < context.max_notional \
and not context.long and not context.short:
return True
else:
return False
def canExitLong(context):
if context.long and not context.short:
return True
else:
return False
def canEnterShort(context):
notional=context.portfolio.positions_value
if notional > context.max_notional \
and not context.long and not context.short:
return True
else:
return False
def canExitShort(context):
if context.short and not context.long:
return True
else:
return False
Sunday, January 19, 2014
Mean reversion with Kalman Filter as Dynamic Linear Regression for Spread Trading within Python
Following code demonstrates how to utilize to kalman filter to estimate hedge ratio for spread trading. The code can be back tested at Quantopian.com
Subscribe to:
Post Comments (Atom)
2 comments:
Hi,
Thanks for posting this. I'm trying to implement something similar using pykalman.
One question: when you are comparing err and stdQ aren't you comparing a dollar amount with a percentage amount?
Maybe that works because of spread is in in cents?
Dave,
err(spread) and stdQ are both in same unit, dollar amount. stdQ is variance of err, Var(err)...
thanks for comment...
Deniz
Post a Comment